中文版  English
 
 
 
 
 
 
 
  
2011中国国际过滤及分离工业展览会
家用净水器的几种水处理方式
《生活饮用水卫生标准》GB5749-
2011中国水展回顾China Wa
上海清晏携新品亮相上海荷瑞水展
更多...
  联系我们
电话: 13391060416
传真: 0086-21-61916409
邮箱: qingyanjh@126.com
网址: www.qingyanjinghua.com
 
《生活饮用水卫生标准》GB5749-2006

概述
 
1.1基本性质
美国化学文摘(CA)编号
500-00-0
IUPAC对甲醛的命名为“methanal”。

分子式
CH2O
理化性质
 
自然状态
无色气体
沸点℃
-19.2
熔点℃
-118
相对密度
1.04(空气为1)
蒸气压
52.6kPa(-33℃)
水溶性(g/l)
在25℃与水互溶
辛醇-水中分配系数的对数
-1
注:空气中的浓度换算:1ppm=1.2mg/m3(25℃)
 
甲醛激性的,令人窒息的象干草和麦秆一样的气味。味阈值和嗅阈值分别为50和25mg/L
 
1.2 主要用途
    甲醛主要的工业用途是用于脲一甲醛、酚类、三聚氰胺、季戊四醇和聚缩醛树脂的生产:它的第二大用途是用于很多种有机物的工业合成中。甲醛还可用在化妆品、杀菌剂、纺织品和香水中。其10%浓度的水溶液俗称“福尔马林”.是动物、植物的防腐保鲜剂
1.3 分析方法
用2,4-二硝基苯肼衍生,固液萃取后,HPLC测定.检测限6.2μg/L。
 
2 环境水平及人体摄入途径
 
2.1 空气
    甲通过塑料及合成树脂胶液进入空气。在空气中的低含量也由从化石燃料衍生的碳-氢化合物的光氧化产生。空气中典型浓度为几μg/m3。吸烟者会摄入高浓度的甲醛。
2.2水
    饮用水中甲醛的来源主要是工业废水的排放和水中天然有机物(腐殖质)在臭氧化,氯化过程中氧化的产物。水中有机物通过热解可产生一定量的甲醛。Yamada等人研究指出加热会使水中甲醛含量增加,在通常的饮用水中甲醛含量为0—24.0μg/L,煮沸后浓度增加为18.073.5μg/L,而经臭氧处理的表面水,煮沸前为10.O110μg/L,煮沸后增至21.O-243μg/L,有关矿泉水中甲醛含量问题也有报导。甲醛也会从聚缩醛树脂的水道配件溶淋下来.

3 动物实验

3.1动物实验及机理
    摄入的甲醛易由胃肠道吸收。在对皮肤的研究中,猴子皮肤对甲醛的吸收力比大鼠和几内亚猪要差。吸收后的甲醛主要分布于肌肉,少量则分布于肠、肝及其它组织中。甲醛能很快的被氧化成甲酸;而随后再氧化成的二氧化碳和水的氧化在猴子中要比在大鼠中慢。在大鼠中的其它代谢产物还有N,N’-二羟甲基脲和N-羟甲基脲。代谢产物最后经尿、粪便及呼吸排出,代谢产物的相对量取决于甲醛的摄入途径。在大鼠和狗饮用含甲醛的水或食用含甲醛的食物的实验中.高剂量会引起一些组织病理学上的变化。生殖、胚胎毒性和致畸性
在小鼠和小猎犬的怀孕期食用含甲醛的食物.没有发现致畸性-其幼鼠的生长发育能力也未受影响。而雄性大鼠一次性摄入甲醛含量按体重计为100200mg/kg的食物,其精子出现异常。

3.2致突变性和致癌性
    甲醛在生物体外试验中对原核及真核细胞都有致突变作用。在果蝇中也表现出基因毒性。甲醛易与蛋白质、RNA和单链DNA结合,导致DNA一蛋白质的交叉结合和单链DNA的断链。甲醛还容易与细胞中的大分子发生化学反应。在大鼠体内,甲醛可以增加DNA的合成以及上皮细胞的微核和细胞核的畸形。
    没有证据证明从口摄入甲醛会导致癌症。在大鼠每天饮用一定甲醛浓度的水的实验中。甲醛的摄入对肿瘤的发病率没有影响。但会产生一些组织病理学方面的变化。还没有证据证明甲醛能通过大鼠的皮肤产生致癌性或诱导肿瘤。
    有证据表明在大鼠和小鼠中,对甲醛气体的摄入(呼吸)可以刺激鼻的上皮细胞而产生致癌性。
 
4对人体的影响
    皮肤接触甲醛气体会导致皮肤受刺激和过敏性皮炎。存在于水过滤系统中的甲醛可能对透析病人引起溶血性贫血症。
 有证据证明人体通过呼吸摄入的甲醛是致癌的。对工厂工人长期接触甲醛气体后死亡率的流行病学研究表明,肺癌发病率的轻微增加与甲醛摄入并没有关系。鼻咽癌也是应该注意的症状,但还是与甲醛无关。但经常暴露在甲醛环境中会产生一些如眼炎、鼻炎及呼吸道炎症等多种疾病。
    Kilburn等人研究了甲醛对神经行为功能的影响。长期(14-30年)使用甲醛、福尔马林可导致中枢神经系统功能的丧失。Norbaeck等人调查了气喘状况及室内空气的关系,指出甲醛和挥发性有机物含量偏高是导致气喘等症状的原因。Godish描述了与甲醛暴露水平有关的16种症状,包括眼炎、嗓子发干、流鼻涕、咳嗽、窦炎、窦感染、头痛、乏力、压抑、失眠、出疹鼻血、恶心、腹泻、胸痛和腹痛等。
    已有足够的证据表明甲醛对动物是强有力的致癌物。Marsh等人的研究表明长期接触甲醛使肺癌的发病率增加1.6倍。Andjelkovish等人调查发现在铸铁厂工人中,呼吸系统的病变及死亡与甲醛暴露水平没有直接联系。
    由于甲醛的毒害作用和致癌作用,因此在与其接触时应严格控制在动物试验和人体试验浓度容许范围之内。

5 分析方法
    由于甲醛在周围环境中广泛存在,对人体的潜在危害较大,因而测试技术的进展有着十分重要的意义。常用的测试方法有光谱分析法、液相色谱、气相色谱、离子色谱、比色法、极谱法和荧光分析法等。wHO推荐饮用水中的甲醛常用高效液相色谱法检测,用与2,4-二硝基肼的衍生物和液一固抽提。
    引人注目的是,近年来现场快速检测技术有了较大发展。Nakano采用检测试纸来测定甲醛的含量。Wang等人试制了一次使用的安培型甲醛传感器。Peat等人推出甲醛的半导体金属氧化物传感器检测器,其敏感材料为锌和锡的氧化物。从实验室到现场实地监测.这是测试方法的发展趋势,但灵敏度还有待提高。为了准确的检测水中甲醛,还可以采用下列方法测定:该方法选用以2.4-二硝基苯肼(2.4-DNPH)作为衍生剂,三氯甲烷为萃取剂,用气相色谱氢火焰离子化检测器测定。本方法选择性好、灵敏度高、操作简便快捷,不受其它物质的干扰,为水环境中甲醛的监测分析提出一个较为理想的方法。

6 国内外标准及限值

现有国内外关于甲醛的有关标准值 
国内外关于甲醛的水质标准值 单位:mg/L

    基于对人和试验动物通过吸入接触甲醛所进行的研究,IARC将甲醛归类为第2A组。有证据表明甲醛经口摄入是不致癌的。WHO水质准则(1998)基于TDI给出甲醛的指标值。从对大鼠进行的2年的研究得出的NOAEL为15mg/kg体重每天,结合不确定度为100(同种和异种的差别),算出其TDI为150ug/kg体重。不考虑从其它家用水的接触途径如淋浴等吸入的甲醛的潜在致癌性,将TDI的20%分配给饮用水,得出甲醛的指标值为900μg/L。我们也据此推荐的饮用水中甲醛的指导值为900μg/L

 
Chemical Abstract Number (CAS #)
50000
Synonyms
Formaldehyde
Methanal
Methylene oxide
Formalin
Analytical Methods
EPA Method 554  EPA Method 8315
Molecular Formula
CH2O
Use
DISINFECTING DWELLINGS, SHIPS, STORAGE HOUSES, UTENSILS, CLOTHES GERMICIDE & FUNGICIDE FOR PLANTS & VEGETABLES DESTROYING FLIES & OTHER INSECTS MFR PHENOLIC RESINS, ARTIFICIAL SILK & CELLULOSE ESTERS, DYES, ORG CHEM, GLASS MIRRORS, EXPLOSIVES IMPROVING FASTNESS OF DYES ON FABRICS MORDANTING & WATERPROOFING FABRICS PRESERVING & COATING RUBBER LATEX IN PHOTOGRAPHY FOR HARDENING GELATIN PLATES & PAPERS TONING GELATIN-CHLORIDE PAPERS CHROME PRINTING & DEVELOPING TO RENDER CASEIN, ALBUMIN & GELATIN INSOL IN CHEM ANALYSIS TO PREVENT MILDEW & SPELT IN WHEAT & ROT IN OATS FUMIGANT FIXATION OF HISTOLOGICAL SPECIMENS & IN ALTERATION OF BACTERIAL TOXINS TO TOXOIDS FOR VACCINES. SOLN, USP AS GERMICIDE MAINLY USED IN 2-8% CONCN TO DISINFECT INANIMATE OBJECTS . Other important uses include wood-industry products, molding cmpd, foundry resins, adhesives for insulation, slow-release fertilizers, the manufacture of permanent-press finishes of cellulose fabrics, and formaldehyde-based textile finishes. In manufacturing fatty amides and in precious metal recovery. CHEM INT FOR PHENOLIC, POLYACETAL & MELAMINE RESINS CHEM INT FOR ACETYLENIC CHEMS-ESP, 1,4-BUTANEDIOL CHEM INT FOR POLYOLS-EG, PENTAERYTHRITOL CHEM INT FOR HEXAMETHYLENETETRAMINE CHEM INT FOR METHYLENE DIANILINE (PRECURSOR OF METHYLENE DIANILINE) CHEM INT FOR PYRIDINE CHEMS & NITROPARAFFIN DERIVS COMPONENT OF DYES & DRILLING MUDS AS STARCH PRESERVATIVE EMBALMING AGENT CHEM INT FOR RESORCINOL-FORMALDEHYDE RESINS CHEM INT FOR ANILINE-FORMALDEHYDE RESINS CHEM INT FOR RUBBER-PROCESSING CHEMS SEWAGE TREATMENT AGENT CHEM INT FOR SYNTHETIC TANNING AGENTS COMPONENT OF TRIOXANE FUEL TABLETS CHEM INT FOR HERBICIDES & FERTILIZER COATINGS CHEM INT FOR PHARMACEUTICALS & ELASTOMERIC SEALANTS Chemical intermediate for explosives and bactericides. Soil sterilant in mushroom houses before planting.
Consumption Patterns
The largest use of formaldehyde is in the manufacture of amino and phenolic resins, accounting for about 55% of the total demand. Wood products account for about 36% of the total formaldehyde demand, with particle board (chips and sawdust with resin binder) first, and plywood second. Approx 80% of the slow-release fertilizer market is based on urea-formaldehyde-containing products. The manufacture of ethylenediaminetetraacetic acid consumes about 75% of the formaldehyde used in the synthesis of chelating agents. The other 25% is used to produce nitrilo acetic acid, primarily for export. Amino resins including urea & melamine, 7.50X10 5 tons. Amino resins molding 5.9X10 4 tons phenolic resins 6.50X10 5 tons & phenolic molding resins 6.6X10 4 tons fertilizers 1.80X10 5 tons textile finishes 6.0X10 4 tons acetal resins 1.80X10 5 tons 1.4-butanediol 2.00X10 5 tons pentaerythritol 1.80X10 5 tons pyridines 4.0X10 4 tons methylenediphenyl isocyanate 6.5X10 4 tons trimethylolpropane 3.5X10 4 tons & hexamine 1.50X10 5 tons (as 37% formaldehyde, 1978). CHEM INT FOR UREA-FORMALDEHYDE RESINS, 26.5% CHEM INT FOR PHENOLIC RESINS, 19.6% CHEM INT FOR ACETYLENIC CHEMS, 8.4% CHEM INT FOR POLYACETAL RESINS, 7.9% CHEM INT FOR PENTAERYTHRITOL, 6.7% CHEM INT FOR HEXAMETHYLENETETRAMINE, 5.5% CHEM INT FOR UREA-FORMALDEHYDE CONCENTRATES, 5.2% CHEM INT FOR METHYLENE DIANILINE, 3.9% CHEM INT FOR MELAMINE RESINS, 3.6% CHEM INT FOR CHELATING AGENTS, 2.8% OTHER, 9.9% (1981). Worldwide demand for formaldehyde in 1976 was estimated to be about 7.5X10 6 tons or 60% capacity. During 1985 resins going in to adhesives and plastics amount to more than 60% of demand most of the rest of formaldehyde demand is for use as a chemical intermediate. Urea-formaldehyde resins, 27% phenolic resins, 21% 1,4-butanediol, 9% polyacetal resins, 9% pentaerythritol, 7% hexamine, 7% urea-formaldehyde concentrates, 6% melamine, 4% MDI, 4% other, including exports, 6% (1984). CHEMICAL PROFILE: Formaldehyde. Urea formaldehyde resins, 27% phenolic resins, 21% acetylenic chemicals, 11% polyacetal resins, 8% pentaerythritol, 7% hexamine, 5.5% ureal formaldehyde concentrates, 5.5% melamine resins, 3.8% MDI, 4.7% miscellaneous, 5%. CHEMICAL PROFILE: Formaldehyde. Demand: 1985: 5.8 billion lb 1986: 6 billion lb 1990 /projected/: 6.63 billion lb. CHEMICAL PROFILE: Formaldehyde. Urea-formaldehyde resins, 25% phenolic resins, 22% polyacetal resins, 9% pentaerythritol, 7% hexamine, 6% urea-formaldehyde concentrates, 6% MDI, 5% melamine resins, 4% miscellaneous, 5%. CHEMICAL PROFILE: Formaldehyde. Demand: 6.73 billion lb 1989: 6.5 billion lb 1993 /projected/: 7.6 billion lb. (Includes exports but not imports, both of which are negligible. Last year, exports totaled 19 million lb, and imports totaled 11 million lb.)
Apparent Color
Clear, water-white, very slightly acid, gas or liquid. Formaldehyde solution is a clear, colorless or nearly colorless liquid
Odor
PUNGENT SUFFOCATING ODOR Irritating odor. Liquid
Boiling Point
-19.5 DEG C
Melting Point
-92 DEG C
Molecular Weight
30.03
Density
1.067 (AIR= 1)
Odor Threshold Concentration
0.5 to 1.0 ppm Detection: media= water: 4.99x10 1 ppm Chemically pure Detection: media= water: 2.50x10 1 ppm Purity not specified Recognition: media= air: 1.00 ppm Chemically pure Odor low: 1.4700 mg/cu m Odor high: 73.5000 mg/cu m
Sensitivity Data
Contact with the skin causes irritation, tanning effect, and allergic sensitization. Contact with eyes causes irritation, itching, & lacrimation.
Environmental Impact
Formaldehyde is produced in large quantities (5.7 billion lb in 1983) primarily for use in the manufacture of resins and as a chemical intermediate. Much of this use is captive and not released into the environment. Most of the formaldehyde entering the environment is produced directly or indirectly in combustion processes. The indirect production is derived from the photochemical oxidation in the atmosphere by sunlight of hydrocarbons or other formaldehyde precusors that have been released from combustion processes. This tremendous input of formaldehyde is removed by direct photolysis and oxidation by photochemically produced hydroxyl radicals (half-life a few hours). Additional quantities are removed by dry deposition, rain or by dissolving in the ocean and other surface waters. In the aqueous compartment biodegradation takes place in a few days. Human exposure to formaldehyde is from ambient air in heavy traffic, particularly during photochemical smog episodes, occupational atmospheres where resins are used or where formaldehyde is used as a fumigant, disinfectant, embalming fluid, etc. Homes, particularly energy efficient ones, can have high levels of formaldehyde from stoves and the emission of the gas from insulation, furniture, resin-coated rugs and other fabrics.
Environmental Fate
TERRESTRIAL FATE: When released on soil, aqueous solutions containing formaldehyde will leach through the soil. While formaldehyde is biodegradable under both aerobic and anaerobic conditions, its fate in soil is unknown. AQUATIC FATE: When released into water, formaldehyde will biodegrade to low levels in a few days. Little adsorption to sediment would be expected to occur. In nutrient-enriched seawater there is a long lag period (approximately 40 hr) prior to measurable loss of added formaldehyde by presumably biological processess . Its fate in groundwater is unknown. ATMOSPHERIC FATE: Formaldehyde is released to the atmosphere in large amounts and formed in the atmosphere by the photooxidation of hydrocarbons. This input is counterbalanced by several important removal paths. It both photolyzes and reacts rapidly with reactive free radicals, principally hydroxyl radicals, which are formed in the sunlight-irradiated atmosphere. The half-life in the sunlit troposphere is a few hours. Reaction with nitrate radicals, insignificant during the day, may be an important removal mechanism at night . The initial oxidation product, formic acid, is a component of acid rain . Because of its high solubility there will be efficient transfer into rain and surface water which may be an important sink . One model predicts dry deposition and wet removal half-lives of 19 and 50 hr, respectively . Although formaldehyde is found in remote areas, it is probably not transported there, but rather a result of the local generation of formaldehyde from longer-lived precursers which have been transported there .
Drinking Water Impact
DRINKING WATER: Not detected in National Organics Reconnaissance Survey of Suspected Carcinogens in Drinking Water(6). SURFACE WATER: 14 Heavily Industrialized river basins in US - 1/204 sites pos, 12 ppb . Detected only in hypolimnion of stagnant lake in Japan . SEAWATER: Not detected in surface waters . RAIN WATER: Mainz and Deuselbach, Germany and Ireland 0.111-0.174 ppm Enewetek Atoll (Central Pacific) 6.2-11.3 ppb 5 sites in California - 1/6 samples pos, 0.06 ppm . ICE FOG: Fairbanks, AK - 0.50-1.16 ppm . MIST: 2 sites in California 0.25-0.56 ppm . FOG: 4 sites in California 0-2.3 ppm . EFFL: Detected in 3 effluent streams, two from chemical plants and one from a sewage treatment plant . Effluent from urea and melamine production contained 4% formaldehyde and from phenolic resin production 0.1% formaldehyde . Effluent of plywood industry which uses phenol and urea-formaldehyde resin glue contains formaldehyde .
日期:2011/6/9 阅读:0次
 
 
 
All rightsReserved 上海清晏净化设备有限公司
技术支持:华诚网络 您是本站第 位访客